確率の本質DVD
もし入試問題が確率だけの出題だったら悲しみますか?
それとも喜びますか?
たぶん悲しむ方が圧倒的な数を占めると思います。
確率の問題集の解答を見ていると計算自身はものすごく
シンプルで小学生でもできる計算のレベルです。
にもかかわらず、なぜ、確率の問題を毛嫌いする人が多いのでしょうか?
その理由は、確率に対する本質的な考え方を学んでいないからだと思います。
確率の意味
確率の定義などは、どの参考書にもでています。
しかし、確率の和の法則
確率の積の法則が成り立つことをきちんと説明した参考書は皆無です。
なぜでしょう。
それは、「法則」という言葉の意味に隠されています。
本来、「法則」というのは、成り立つことを問う必要がない、
これ以上、分解することができない、証明することはできませんが、
常に普遍に成り立つという意味で使われるからです。
ただ、今の時代、「法則」と言われてきたものが、
厳密に成り立つ理由、つまり本質的な原理が解明されているものもあります。
たとえば、中学理科の電流のところで習う「オームの法則」は、
法則としてではなく、公式として扱えるくらい、厳密に成り立つことが
高校レベル大学レベルで解明および証明されています。
こういうところまできちんとわかりやすく法則が成り立つ理由を
説明をすることが勉強の本質だと思っています。
この中学レベルの確率の本質ビデオ学習では、具体例を使って、
この確率の和の法則や
確率の積の法則が成り立つことをきちんと説明しました。
そのため、レベルは高いです。
考え方そのものは、大学受験でも使えるくらいのレベルです。
偏差値アップ実践会ですから(笑)。
安心してください。
誰でも理解できるように作ってあります。
理解できる条件として、小学生レベルの計算ができる人ならば大丈夫です。(本当!)
でも本当の小学生は困ります(笑)
確率の問題は、
この確率の和の法則や
確率の積の法則が混在して現れてくるのです。
それをどうやったら皆さんが納得できるように、また忠実に再現させるかは、
私の得意とするところです。
ビデオのみに集中してご覧ください。
「確率の本質」ビデオ学習の内容は下記のとおりです。
確率の意味
確率の定義
例題 1つのサイコロを投げるとき次の確率を求めなさい。
(1) 5の目が出る確率
(2) 奇数の目が出る確率
確率の意味と定義を確認しながら解説(一般的解説)
本質的な確率の考え方で解説
例題 袋の中に赤玉3こ、白玉2こ、青玉1こが入っている。
この袋から玉を1こ取り出すとき、次の確率を求めなさい。
(1) 赤玉が出る確率
(2) 白玉が出る確率
(3) 青玉が出る確率
確率の意味と定義を確認しながら解説(一般的解説)
本質的な確率の考え方で解説
例題 A、Bの2枚の硬貨を同時に投げるとき次の確率を求めなさい。
(1) 2枚とも表が出る確率
(2) 表と裏が1枚ずつ出る確率
確率の意味と定義を確認しながら解説(一般的解説)
樹形図で解く解説 (一般的解説)
本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる
瞬間を再現)
計算で解いてしまう解説
例題 袋の中に赤玉3こ、白玉2こが入っている。
この袋から同時に2この玉を1こ取り出すとき、次の問いに答えなさい。
(1) 玉の取り出し方は全部で何とおりか。
(2) 2ことも赤玉が出る確率
(3) 1こが赤玉で1こが白玉である確率
確率の意味と定義を確認しながら解説
樹形図で解く解説 (一般的解説)
本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる
瞬間を再現)
計算で解いてしまう解説
例題 4本のうち2本のあたりくじが入っているくじがある。
そのくじをAが先に1本ひき、続いてBが1本ひくとき、次の問いに答えなさい。
この袋から同時に2この玉を1こ取り出すとき、次の問いに答えなさい。
(1) 樹形図を作ってAがあたる確率と、Bがあたる確率をそれぞれ求めなさい。
(2) 計算のみで、Aがあたる確率と、Bがあたる確率をそれぞれ求めなさい。
確率の意味と定義を確認しながら解説
樹形図で解く解説 (一般的解説)
本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる
瞬間を再現)
計算で解いてしまう解説
例題 3枚の硬貨を同時に投げるとき次の確率を求めなさい。
(1) 3枚とも裏が出る確率
(2) 1枚だけが表となる確率
確率の意味と定義を確認しながら解説(一般的解説)
樹形図で解く解説 (一般的解説)
本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる
瞬間を再現)
計算で解いてしまう解説
例題 5人の生徒A、B、C、D、Eの中から、くじ引きで2人の委員を選んで委員会を作るとき、
次の問いに答えなさい。
(1) 2人の委員の選びかたは何とおりありますか。
(2) 委員にBが含まれる確率を求めなさい。
確率の意味と定義を確認しながら解説
樹形図で解く解説 (一般的解説)
本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる
瞬間を再現)
計算で解いてしまう解説
例題 大小2つのサイコロを同時に投げるとき次の確率を求めなさい。
(1) 出る目の和が6になる確率
(2) 出る目の差が2になる確率
(3) 出る目の積が12になる確率
(4) 大きいサイコロの出た目をA、小さいサイコロの出た目をBとするとき
B=2×Aを満たす確率
(5) 同じ目の出る確率
(6) 出る目の和が9以上になる確率
確率の意味と定義を確認しながら解説(一般的解説)
樹形図で解く解説 (一般的解説)
本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる
瞬間を再現)
計算で解いてしまう解説
上記のことが理解できると、
あなたは、たちまち本物の実力がつき始めます。
あなたの実力を120分以内に確実に上げます。
本物の勉強は、ここがスタートラインです。
そして、これらがわかると、勉強で悩んだことのあるあなたなら、
爆発的に実力がつくでしょう。
問題集が納得して解けるようになります。
やればやるだけ実力がついていくベストの状態に向上させます。
本質の威力を体感してみてください。
また、本質ビデオ学習は、塾や予備校の先生達にも人気があります。
理由はこの本質ビデオ学習の通りに教えれば、生徒の実力がつくからです。
勉強熱心な先生達の教材にもなっています。
「確率の本質」のDVD&ビデオ学習で、
何が深く理解できるのですか?
下記の8項目の「なぜ?」が、 このビデオによって、より深く理解できます。
その結果、確率は、もうあなたの得意分野になります。
第11巻 確率の本質
- 確率の定義とは?
- 確率の意味とは?
- 確率の和の法則が成り立つ理由は?
- 確率の積の法則が成り立つ理由は?
- 確率の和の法則と積の法則が生まれる瞬間とは?
- 確率の和の法則や確率の積の法則が混在しているということはどういう意味か?
- 各例題とも別解の方法をして、なおかつ、別解同士のつながりを確認しています。
- 例題 1つのサイコロを投げるとき次の確率を求めなさい。 (1) 5の目が出る確率 (2) 奇数の目が出る確率 確率の意味と定義を確認しながら解説(一般的解説) 本質的な確率の考え方で解説。
- 例題 袋の中に赤玉3こ、白玉2こ、青玉1こが入っている。 この袋から玉を1こ取り出すとき、次の確率を求めなさい。 (1) 赤玉が出る確率 (2) 白玉が出る確率 (3) 青玉が出る確率 確率の意味と定義を確認しながら解説(一般的解説) 本質的な確率の考え方で解説
- 例題 A、Bの2枚の硬貨を同時に投げるとき次の確率を求めなさい。 (1) 2枚とも表が出る確率 (2) 表と裏が1枚ずつ出る確率 確率の意味と定義を確認しながら解説(一般的解説) 樹形図で解く解説 (一般的解説) 本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる瞬間を再現) 計算で解いてしまう解説
- 例題 袋の中に赤玉3こ、白玉2こが入っている。 この袋から同時に2この玉を1こ取り出すとき、次の問いに答えなさい。 (1) 玉の取り出し方は全部で何とおりか。 (2) 2ことも赤玉が出る確率 (3) 1こが赤玉で1こが白玉である確率 確率の意味と定義を確認しながら解説 樹形図で解く解説 (一般的解説) 本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる瞬間を再現) 計算で解いてしまう解説
- 例題 4本のうち2本のあたりくじが入っているくじがある。 そのくじをAが先に1本ひき、続いてBが1本ひくとき、次の問いに答えなさい。 この袋から同時に2この玉を1こ取り出すとき、次の問いに答えなさい。 (1) 樹形図を作ってAがあたる確率と、Bがあたる確率をそれぞれ求めなさい。 (2) 計算のみで、Aがあたる確率と、Bがあたる確率をそれぞれ求めなさい。 確率の意味と定義を確認しながら解説 樹形図で解く解説 (一般的解説) 本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる瞬間を再現) 計算で解いてしまう解説
- 例題 3枚の硬貨を同時に投げるとき次の確率を求めなさい。 (1) 3枚とも裏が出る確率 (2) 1枚だけが表となる確率 確率の意味と定義を確認しながら解説(一般的解説) 樹形図で解く解説 (一般的解説) 本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる瞬間を再現) 計算で解いてしまう解説
- 例題 5人の生徒A、B、C、D、Eの中から、くじ引きで2人の委員を選んで委員会を作るとき、 次の問いに答えなさい。 (1) 2人の委員の選びかたは何とおりありますか。 (2) 委員にBが含まれる確率を求めなさい。 確率の意味と定義を確認しながら解説 樹形図で解く解説 (一般的解説) 本質的な確率の考え方で解説 (確率の和の法則と積の法則が生まれる瞬間を再現) 計算で解いてしまう解説
- 例題 大小2つのサイコロを同時に投げるとき次の確率を求めなさい。 (1) 出る目の和が6になる確率 (2) 出る目の差が2になる確率 (3) 出る目の積が12になる確率 (4) 大きいサイコロの出た目をA、小さいサイコロの出た目をBとするとき B=2×Aを満たす確率 (5) 同じ目の出る確率 (6) 出る目の和が9以上になる確率
- ビデオで使用した実物原稿のコピー付き。
「確率の本質」のDVD&ビデオ学習で何を伝えたいですか?
確率の和の法則と積の法則が成り立つ理由を具体例を通して見てほしいですね。
計算のみで確率が求まることも伝えたいですね。
ちなみにCとかPの記号などは一切使っておりませんので
安心して見ることができます。
これだけ本質から理解できると入試問題がやさしく感じます。
「確率の本質」のDVD&ビデオ学習を見たあとは、
どうなりますか?
標準的な入試問題ができるようになるでしょう。
本質DVDの購入方法を確認したい場合は、「ここをクリック」してください。詳しく説明しております。
本質DVDのご購入は、下記の「ご購入はこちら」のボタンをクリックしてください。
(本質DVD購入専用カートのページが開きます)